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We show in this paper that thermopower is enhanced in non-Abelian quantum Hall liquids under appropriate
conditions. This is because thermopower measures entropy per electron in the clean limit, while the degeneracy
and entropy associated with non-Abelian quasiparticles enhance entropy when they are present. Thus ther-
mopower can potentially probe non-Abelian nature of the quasiparticles, and measure their quantum
dimension.
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Recently there has been very strong interest in unusual
fractional quantum Hall �FQH� states,1,2 whose quasiparticle
excitations obey non-Abelian statistics.3 Such interest is par-
tially driven by the potential of using non-Abelian quasipar-
ticles for quantum information storage and processing in an
intrinsically fault-tolerant fashion.3–7 At this time the most
promising candidate for non-Abelian statistics is the FQH
state at filling factor �0=5 /2,8 in which the electrons in the
half-filled first excited Landau level may condense into the
Moore-Read �MR� �or Pfaffian� state9 or its particle-hole
conjugate �anti-Pfaffian state�,10,11 whose elementary quasi-
particles have charge e�=e /4. Theoretical support for the
Pffafian or anti-Pfaffian state as an explanation for the FQH
state at �0=5 /2 has come from a variety of numerical
calculations.12–17

Phenomenologically, the 5/2 state looks very similar8,18 to
other FQH or integer quantum Hall states in ordinary trans-
port measurements: one sees a quantized Hall resistance pla-
teau and thermally activated longitudinal resistance. How-
ever, recent measurements, which involve tunneling between
opposite edges across a constriction, have probed the quasi-
particle charge e� �Refs. 19 and 20� and may have also seen
effects of non-Abelian statistics.21 In this work we argue that
bulk thermoelectric measurements, in particular ther-
mopower, can also reveal the statistical properties of the non-
Abelian quasiparticles under appropriate conditions. This is
possible because thermopower can probe the entropy carried
by non-Abelian quasiparticles, which is larger than that of
Abelian quasiparticles at low temperature.

A key property of non-Abelian statistics is the appearance
of ground-state degeneracy D that grows �up to an O�1� pre-
factor� exponentially with the number of quasiparticles
present in the system, Nq, when their positions are fixed:

D � dNq, �1�

where d�1 is the quantum dimension3 of the quasiparticle.
For the non-Abelian quasiparticles in the MR Pfaffian or
anti-Pfaffian state, d=�2. We will use them as the primary
examples of our discussion below, although essentially all of

our discussions apply to other non-Abelian FQH states. Such
degeneracy results in a ground-state entropy

Sd = kB log D = kBNq log d + O�1� , �2�

where kB is the Boltzmann constant; i.e., each quasiparticle
carries entropy kB log d. In principle, there exists very weak
coupling among the quasiparticles that can lift the ground-
state degeneracy.22 However such coupling vanishes expo-
nentially as a function of the distance between quasiparticles.
Thus entropy formula �2� remains valid as long as the tem-
perature T satisfies the condition

T0 � T � T1, �3�

where T0��e−l/l0 �� is quasiparticle gap, l is the distance
between quasiparticles, and l0 is the characteristic size of the
quasiparticle� is the temperature scale associated with quasi-
particle couplings, and T1 is the temperature scale associated
with other �ordinary� excitations in the system, including
those related to the quasiparticles’ positional degrees of free-
dom. In principle, T0 can be extremely low near the center of
the quantum Hall plateau due to its exponential dependence
on quasiparticle density, while T1 should be larger. In par-
ticular, if the density of quasiparticles is sufficiently low, we
expect that the quasiparticles will form a Wigner crystal due
to the repulsion between quasiparticles, so the positional en-
tropy should indeed disappear at low temperatures. We shall
return to this issue later.

In a uniform system, the number of quasiparticles at low
temperatures will be proportional to the deviation of the
magnetic field B from the value B0 at the center of the pla-
teau, where the filling fraction is equal to the ideal value �0:

Nq = ��e/e���B − B0�/B0�Ne, �4�

where Ne is the number of electrons in the system. As a result
the entropy Sd=kBNq log d grows linearly as B deviates from
the center of the plateau B0, within temperature range �3�.

This entropy due to the presence of non-Abelian quasipar-
ticles can be probed using thermopower. In a thermopower
measurement, one sets up a temperature gradient �T, and
voltage gradient E=−�V is generated by the system to com-
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pensate for its effect so that no net electric current is flowing.
The ratio between them,

Q = − �V/�T �5�

is the thermopower �also known as the Seebeck coefficient�.
It is well known23 that under suitable circumstances, Q mea-
sures the “entropy per charge carrier” in the system. This has
been rigorously justified for electrons in a strong magnetic
field in the clean limit, first for noninteracting electrons24 and
then for interacting electrons,25 so

Q = − S/�eNe� . �6�

In the following we present a derivation of Eq. �6� that is
slightly simpler than but closely related to the arguments
presented in Ref. 25. For an electron liquid without impurity
scattering, the absence of net particle current requires that the
variation in the liquid’s internal pressure P balance with ex-
ternal potential �:

�P = � �P

��
	

T

� � + � �P

�T
	

�

� T = − n � � . �7�

Here n=Ne /A is electron number density, A is area, and � is
the local chemical potential measured from �. The electro-
chemical potential is thus �=�+�, which is what an ideal
voltage contact measures. From the grand potential relation

d� = − SdT − PdA − Ned� �8�

follows the Maxwell relations � �P
�� �T,A= �

�Ne

�A �T,�=Ne /A=n and
� �P

�T ��,A= � �S
�A �T,�=S /A. The last steps follow from the exten-

siveness of S, Ne, and A, which are proportional to each other
when intensive quantities � and T are fixed. Thus we find

n � � + �S/A� � T = − n � � , �9�

or

��/�T = − S/Ne. �10�

The voltage measured by voltmeter with ideal contacts is
�� /q, where q is the charge of the liquid’s constituent par-
ticle, for electrons q=−e, while for holes q=e. Thus Eq. �6�
follows for electron samples; for hole samples there is a cor-
responding sign change.

The simplicity of the argument above suggests that result
�6� applies even in the absence of magnetic field, in the clean
limit. We note that when studying thermoelectric effects, one
usually starts with transport equations,26 and thermopower is
expressed as a ratio between transport coefficients.25–27 In the
absence of both disorder and magnetic field, transport coef-
ficients are divergent and not well defined. However ther-
mopower is still well defined and finite, and can be obtained
easily using the hydrodynamic arguments presented above.

Strictly speaking, the hydrodynamic analysis above ap-
plies to a liquid whose internal stress tensor has only a diag-
onal component P. When the quasiparticles form a Wigner
crystal, it may sustain some shear stress when driven out of
equilibrium. This may result in correction to Eq. �7�, which
is proportional to the product of shear strain gradient �if
present� and shear modulus of the crystal. However due to
the long-range nature of the Coulomb interaction and the

very small percentage of charge that actually forms the crys-
tal, we expect the shear modulus to be much smaller than the
bulk modulus, and such correction should be negligible.

Combining Eqs. �2�, �4�, and �6� we find within tempera-
ture window �3� and in the clean limit,

Q = − ��B − B0�/B0��kB/�e���log d . �11�

Since �e�� can be measured independently,19–21 Eq. �11� sug-
gests that thermopower gives a direct measurement of quan-
tum dimension d in the clean limit. It should be emphasized
that it is d�1 that directly reveals the non-Abelian nature of
the quasiparticle, while a fractional charge may correspond
to either Abelian or non-Abelian quasiparticles. We note that
in the low-temperature regime we are discussing here,
phonons will be frozen out so that extrinsic effects such as
phonon drag are absent. Thus thermopower should probe the
intrinsic properties of the electron system.

We now turn the discussion to temperature range �3�
within which our entropy formula �2� is valid. If the quasi-
particles form a Wigner crystal, positional entropy comes
from magnetophonons at low T, and one would expect T1

TD, where TD is the maximum phonon energy or Debye
temperature. Treating the quasiparticles as point particles
with charge e� moving in the magnetic field B, they form a
triangular lattice with lattice spacing

a = lB� 4	

�3�0

e

e�

B0

�B − B0��1/2

, �12�

where lB is the magnetic length. Using the known magne-
tophonon spectrum of that system,28 we obtain

kBTD �
e2


lB
� e

�e����0�B − B0�
B0

�3/2

. �13�

To justify treating quasiparticles as real particles for the spe-
cific case of �0=5 /2, we observe that they are vortices of a
paired composite fermion superconductor. Using a duality
transformation these vortices become particles, and the back-
ground composite fermion Cooper pairs become a magnetic
field. While the short-range part of the quasiparticle interac-
tion is not known, the long-range part is determined by the
charge e�, which is the most important in the low-density
limit.

Another important temperature here is the melting tem-
perature Tm. Its classical value is a small fraction of the
Coulomb interaction energy between quasiparticles:

kBTm =
1

�

�e��2


lB
��0�B − B0�

2B0

e

�e���1/2

, �14�

where �
137.29–31 Thus Tm and TD have different depen-
dences on B−B0. This allows for the interesting possibility of
Tm�TD. If melting is continuous or very weakly first order,
the liquid state that results from melting is expected to have
strong short-range crystal order, and its positional entropy
remains to be small compared to Sd as long as T�TD. As a
result we expect Tm�T1�TD in this case. On the other hand
if melting is a strong first-order transition with latent heat of
order kBTm per quasiparticle, then we have T1=Tm.

For highest quality samples where the 5/2 FQH plateaus
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are observed, we typically have B0
4 T, which results in
lB
100 Å, and at the edge of plateau �B−B0� /B0
1 /200,
indicating that the quasiparticles form a �pinned� Wigner
crystal up to that point, at low temperature. Using the dielec-
tric constant 
=13 and e� /e=1 /4, we obtain Tm
7 mK and
TD
300 mK at 5/2 plateau edge. We indeed have Tm�TD
in this case.

To estimate T0, we choose l0=��e /e��lB, which is the
quasiparticle magnetic length, and l=a. Combining with �

0.5 K we obtain T01 mK on the plateau. We note that
these estimates are quite rough, especially that of T0, due to
the uncertainty in l0 which enters the exponential.

In general, the presence of disorder will give corrections
to result �6�. In particular, a quasiparticle Wigner crystal is
expected to be pinned by weak disorder in the linear-
response regime, which is what gives rise to the FQH plateau
in the first place. Pinning will also suppress its contribution
to thermopower. Thus in order to observe the predicted effect
on thermopower, one needs to depin the quasiparticles. The
most straightforward way to do that is to melt the quasipar-
ticle Wigner crystal by having T�Tm. To ensure positional
entropy being small compared to Sd, we need T�TD and
melting being a continuous or weak first-order transition.
Experiment29 as well as numerical simulation of classical
Coulomb system suggests that this is indeed the case.30–33

For T�Tm, the liquid has strong short-range crystal order,
and positional entropy can be estimated by summing the con-
tributions from magnetophonons and free dislocations
�which triggers melting in two dimensions�. Just like in the
crystal phase, the phonon contribution is small compared to
Sd as long as T�TD. The dislocation contribution

Sdis 
 Ndis log�Nq/Ndis� , �15�

where Ndis is the number of free dislocations in the system.
Thus Sdis�Sd as long as Ndis�Nq. At low T we expect
Ndis /Nq�e−Ec/kBT, where Ec is the dislocation core energy.
Using results from a classical calculation at T=0,34 one finds

Ec 
 0.11
�e��2


lB
��0�B − B0�

2	B0

e

�e���1/2

, �16�

or Ec /kBTm
8. One needs to take caution here, as both
quantum and thermal fluctuations can renormalize Ec down-
ward.35

While disorder cannot pin a quasiparticle liquid, it can
still give rise to significant resistance as a liquid with a low
density of dislocations tends to be very viscous. Thus in
order to observe the non-Abelian entropy through Eq. �11�,
we need to work in the temperature range

Tm  T � TD �17�

and with sufficiently clean sample. The sample should be
clean enough such that within the range of Eq. �17�, the Hall
resistivity �xy is close to its classical value reached at high
temperature, while the longitudinal resistivity �xx is small
compared to the quasiparticle contribution to �xy.

Throughout our analysis, we have assumed that variations
in � due to inhomogeneities in the electron density are small
compared to the average value of ��−�0�, which puts addi-

tional stringent condition on sample quality. We have also
assumed that there is no short-range attraction between
quasiparticles strong enough to overcome their Coulomb re-
pulsion and cause binding between pairs. If binding occurs,
then quasiparticles might form a Wigner crystal of charge
e /2 pairs, for small values of �B−B0�, and the entropy Sd
would be lost.

Another possible concern is that since non-Abelian de-
generacy �1� is not associated with individual quasiparticles,
but is a global property, the system might have difficulty
accessing all the �nearly� degenerate states and the associated
entropy at very low temperature. We do not believe this will
be a problem in a thermopower measurement. Thermopower
is driven, physically, by effects at the edges of the sample,
where equilibrium is established between electrons in a lead
or contact and quasiparticles within the two-dimensional
�2D� quantized Hall system. This necessarily assumes that
there is some reasonable rate of hopping of charge back and
forth between the two-dimensional system and the leads,
with creation and annihilation of quasiparticles close to the
edge. As a result of this hopping, there should be a consid-
erable amount of braiding in the edge region, which should
give access to the full entropy of the states near the edges.
We believe this is all that is required for the entropy to show
up in a measurement of thermopower. However, we expect
that even in the bulk, in the Wigner crystal phase, there will
be significant braiding of quasiparticles on the laboratory
time scale, due to motion of dislocations, interstitials, and
vacancies. Moreover, even if one neglects braiding, splitting
of the ground-state degeneracy due to the exponentially
small interactions between quasiparticles will still corre-
spond to a rate that is fast on a laboratory time scale, if one
is not extremely close to the center of the plateau in a very
uniform sample.

Thermopower has been studied in 2D electron gas in a
magnetic field �especially in the quantum Hall regimes�, both
theoretically25,36 and experimentally.37,38 Experimentally it
was found that Q reaches minima as a function of magnetic
field on integer and fractional quantum Hall plateaus, and
vanishes �apparently� exponentially as T→0 there. Ther-
mopower is bigger at filling factors corresponding to com-
pressible states, but still vanishes as T→0, typically in a
power-law manner.38 The central result of this work is that
thermopower can be strongly enhanced near filling factors
where a non-Abelian quantum Hall state is realized, and
takes a roughly temperature-independent value within tem-
perature range �17�, which depends on the quantum dimen-
sion of the non-Abelian quasiparticle in sufficiently clean
samples.

The mechanism for thermopower enhancement discussed
here also applies to entropy generated by more conventional
source of degeneracy, such as electron spin. Specific ex-
amples include the Wigner crystals formed on the integer
quantum Hall plateaus around �=2n, where n is an integer.
In this case the quasiparticles are simply electrons or holes,
and if the Landé g factor is tuned to be very close to zero by
applying proper pressure, they each carry a spin entropy
kB log 2 for temperature above the very small Zeeman split-
ting. As a result Eq. �11� applies in the appropriate tempera-
ture range, with �e��=e and d=2. There are several advan-
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tages in attempting to observe the physics discussed here in
these systems, as compared to the non-Abelian FQH states:
�1� the gap is bigger and quantized plateau wider, allowing
for a bigger field range for exploration; and �2� combined
with bigger quasiparticle charge, this leads to higher TD and
Tm. These lead to a more accessible and possibly wider range
of temperature for the validity of Eq. �11�.

Note added. The present paper supersedes an earlier
paper39 by one of us on the same subject. Very recently a
preprint40 appeared in which the authors use ideas closely

related to those discussed here to explore possibilities of
probing non-Abelian entropy under equilibrium situations.
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